Technická dokumentace pluginu GridRuler

Štěpán Helmer Výzkumný ústav rostlinné výroby, v.v.i., Drnovská 507/73, Praha 6 - Ruzyně, 161 06

Obsah

1.	Úvod	3
2.	Instalace	3
	2.1 Stažení ImageJ nebo FIJI	3
	2.2 Stažení pluginu	3
	2.3 Instalace pluginu v ImageJ/FIJI	3
3.	Zpracování snímků	4
	3.1 Příprava snímků	4
	3.2 Možnosti Pluginu	4
	3.3 Vyberte složku	5
	3.4 Výstupní soubory	5
4.	Popis Algoritmu	6
	4.1 Nastavení vlastností obrázku	7
	4.2 Převod na stupně šedi	8
	4.3 Výpočet průměrných barev linek	9
	4.4 Detekce čar mřížky	.10
	4.5 Detekce čtverců	. 11
	4.6 Rozpoznání mřížky	.12
	4.7 Maskování linek mřížky	.13
	4.8 Výběr mřížky	.13
	4.9 Kalibrace rozměrů	.14
	4.10 Tresholding	. 15
	4.11 Předzpracování objektů	. 16
	4.12 Analýza objektů	. 17

1. Úvod

GridRuler je plugin ve volně stažitelném programu pro obrazovou analýzu ImageJ či FIJI a byl vyvinut s cílem usnadnit a automatizovat analýzu mikroskopických snímků buněk uspořádaných na mřížce. Plugin je tedy vhodný pro analýzu snímků získaných z Neubauerovi komůrky (hemocytometru) či Burkerovi komůrky. Plugin po základním nastavení zpracuje všechny snímky ve zvolené složce. Plugin GridRuler vyhledává objekty na základě jejich velikosti v reálných jednotkách, kterou odvodí na základě velikosti mřížky.

2. Instalace

2.1 Stažení ImageJ nebo FIJI

Webová stránka pro stažení FIJI pro všechny operační systémy: https://imagej.net/software/fiji/downloads

Webová stránka pro stažení ImageJ pro všechny operační systémy: <u>https://imagej.net/ij/download.html</u>

2.2 Stažení pluginu Plugin najdete na stránkách VURV u popisu pluginu ve formátu java: https://www.vurv.cz/vyzkum/software/

2.3 Instalace pluginu v ImageJ/FIJI

de ImageJ		1-1	×
File Edit Image Process Analyze Plugins	Macros	•	
CC 이 / 소 밖 지 오 깨 Scrolling tool (or press space bar and drag)	Shortcuts	· -	>>
	New		
	Compile and Run		
	Install (Ctrl+Shift+M	

Klikněte na záložku Plugins a na Install, najděte Vámi stažený plugin a nainstalujte jej. Plugin pak bude viditelný pod názvem Grid_Ruler v záložce Plugins.

3. Zpracování snímků

3.1 Příprava snímků

• Śnímky by ideálně neměly býtnijak natočené, aby vodorovné a svislélinky mřížky nevybočovaly. Linky by měli začínat kus od kraje. Snímky mohou být ve formátech PNG, JPG, TIFF čiGIF. Snímky mohou být v odstínech šedi i barevné.

3.2 Možnosti Pluginu

Po instalaci se otevře dialogové okno pro specifikaci mřížky, sledovaných částic a výstupních souborů

3.3 Vyberte složku

Po vybrání složky s vašimi obrázky klikněte na select (vybrat)

Select Folder	82		×
Look in:	image]	 E 📩 💷 	
Naposledy ot	workdir		
Plocha			
Dokumenty			
Tento počítač			
1	Folder name:	Selec	:t
Siť	Files of type:	All Files 🗸 Canc	el

3.4 Výstupní soubory

- Všechny výstupní soubory budou uloženy ve složce Results, jež bude vytvořena ve složce s Vašimi obrázky.
- **Tabulky-výsledkem** vašich analýz budou dvě tabulky v .csv formátu: Particles.csv s parametry of všech částic ze všech snímků. Druhá je Count.csv s počtem objektů na jednotlivých snímcích.
- **Snímky-**Dalším výstupem mohou upravené snímky-originální snímek s kalibrovanými jednotkami, ořízlý original snímek v odstínech šedi a v binární formě. Všechny snímky jsou kalibrovány na reálné jednotky podle mřížky.

4. Popis Algoritmu

Plugin Grid_Ruler pro ImageJ se skládá ze série kroků analýzy obrazu s mřížkovou strukturou a identifikuje částice uvnitř mřížky. Zde jsou konkrétní kroky algoritmu:

- Nastavení vlastností obrázků
- Konverze do odstínů šedé
- Výpočet průměrných hodnot barev svislých a vodorovných linek
- Detekce linek mřížky
- Detekce čtverců
- Rozpoznání mřížky
- Maskování čar mřížky
- Kalibrace rozměrů
- Tresholding-binarizace
- Předzpracování obrázků
- Analýza objektů

4.1 Nastavení vlastností obrázku

 V dialogovém okně se nastavuje počet čtverců v mřížce pro oba směry a velikost mřížky v reálných jednotkách. Také je nastavený minimální a maximální průměr hledaných částic.

4.2 Převod na stupně šedi

- Snímek je konvertován do 8-bitového formátu (formátu v odstínech šedi).
- 8-bitový formát má 256 hodnot, každý pixel má hodnotu od 0 (černá) do 255 (bílá).

8-bitový snímek

4.3 Výpočet průměrných barev linek

- Snímek je analyzován řádek po řádku a sloupec po sloupci pro výpočet průměrné barevné hodnoty každého řádku a každého sloupce
- Tyto průměrné hodnoty řádků a sloupců jsou uloženy v datovém typu arraylist
- Vzorec pro výpočet průměrné hodnoty řádku a sloupce je následující
- Pro řádek:

 $XY_1 = (x_1y + x_2y + ... + x_ny) / n$

- Pro sloupec:
- $X_1Y = (xy_1 + xy_2 + ... + xy_m) / m$

X 1 y 1	X 2 y 1			X n y 1
X ₁ y ₂				
X1 y m				

4.4 Detekce čar mřížky

- Jsou analyzovány listy průměrných hodnot barev řádků a sloupců
- Pokud se průměrná hodnota barvy dvou po sobě jdoucích řádků nebo sloupců liší o určitou hodnotu, jsou souřadnice těchto řádků respektive sloupců zapsány do listu linek mřížky.

Linky mřížky jsou detekovány

4.5 Detekce čtverců

- Linky čtverců jsosu selektovány z detekovaných linek mřížky.
- Linky tvořící největší čtverec jsou identifikovány.
- Vzdálenosti linek největšího čtverce jsou použity k hledání párů vertikálních a horizontálních linek.
- Detekované páry linek jsou zapsány do dalších listů.

Linky ohraničující čtverce jsou vybrány z linek mřížky

4.6 Rozpoznání mřížky

Struktura mřížky je rozeznána na základě detekovaných dvojicích linek vnitřních čtverců. Z nich jsou vybrány čtverce v obou směrech na základě zadaného počtu čtverců v dialogovém okně.

Čtverce jsou vybrány ze všech čtverců na základě počtu čtverců, jež jsou vybrány v dialogovém okně.

4.7 Maskování linek mřížky

• Hodnota barvy pixelů linek mřížky je nastavena na hodnotu 255, tento krok je důležitý pro proces binarizace.

4.8 Výběr mřížky

• Rozpoznaný čtverec mřížky je oříznut

4.9 Kalibrace rozměrů

• Na základě informací o reálné velikosti částic a mřížky jsou nastaveny rozměry obrázku

4.10 Tresholding

- Tento krok konvertuje snímek v odstínech šedé na binární formát kde jsou pixely rozděleny na dvě kategorie černé pozadí a bílé objects of interest.
- Thresholding je proces nastavení práhu, který rozdělí pixely that reprezentující objects of interest od pozadí.
- Metoda maxEntropy je použita pro thresholding.

4.11 Předzpracování objektů

- Objekty jsou předzpracovány pro počítání částic na základě velikosti.
- **Dilatace**: Zvětšení objektů ke spojení blízkých objektů v jeden a uhlazení malých nerovnoměrností
- Vyplnění děr: Vyplnění malých děr či mezer uvnitř objektů.
- Watershed: Segmentace překrývajících se objektů.
- **Eroze**: Redukce nebo zúžení objektů na snímcích opačný děj než dilatace.

Originál

Wateersheed

Eroze

16

4.12 Analýza objektů

- Jsou identifikovány souvislé plochy bílých pixelů na černém pozadí na základě jejich velikosti. Parametr velikosti částic je vybrán na zátku v dialogovém okně.
- Objekty jsou hledány jak objekty rovné (π * (průměr/2))²
- Každá charakteristika částice jako je velikost, shape a pozice jsou analyzovány
- Získaná data jsou zpracována a exportována jako tabulky.

Průměry částic v reálných jednotkách jsou použity k hledání částic na základě jejich velikosti.